Back to skills
dspy-rb
Build type-safe LLM applications with DSPy.rb - Ruby's programmatic prompt framework with signatures, modules, agents, and optimization
2 stars
0 votes
0 copies
0 views
Added 12/19/2025
data-aigorubyreactrailstestinggitapidocumentation
Works with
api
Install via CLI
$
openskills install vicentereig/dspy-rb-skillFiles
SKILL.md
---
name: dspy-rb
description: Build type-safe LLM applications with DSPy.rb - Ruby's programmatic prompt framework with signatures, modules, agents, and optimization
---
# DSPy.rb
> Build LLM apps like you build software. Type-safe, modular, testable.
DSPy.rb brings software engineering best practices to LLM development. Instead of tweaking prompts, you define what you want with Ruby types and let DSPy handle the rest.
## Overview
DSPy.rb is a Ruby framework for building language model applications with programmatic prompts. It provides:
- **Type-safe signatures** - Define inputs/outputs with Sorbet types
- **Modular components** - Compose and reuse LLM logic
- **Automatic optimization** - Use data to improve prompts, not guesswork
- **Production-ready** - Built-in observability, testing, and error handling
## Core Concepts
### 1. Signatures
Define interfaces between your app and LLMs using Ruby types:
```ruby
class EmailClassifier < DSPy::Signature
description "Classify customer support emails by category and priority"
class Priority < T::Enum
enums do
Low = new('low')
Medium = new('medium')
High = new('high')
Urgent = new('urgent')
end
end
input do
const :email_content, String
const :sender, String
end
output do
const :category, String
const :priority, Priority # Type-safe enum with defined values
const :confidence, Float
end
end
```
### 2. Modules
Build complex workflows from simple building blocks:
- **Predict** - Basic LLM calls with signatures
- **ChainOfThought** - Step-by-step reasoning
- **ReAct** - Tool-using agents
- **CodeAct** - Dynamic code generation agents (install the `dspy-code_act` gem)
#### Lifecycle callbacks
Rails-style lifecycle hooks ship with every `DSPy::Module`, so you can wrap `forward` without touching instrumentation:
- **`before`** – runs ahead of `forward` for setup (metrics, context loading)
- **`around`** – wraps `forward`, calls `yield`, and lets you pair setup/teardown logic
- **`after`** – fires after `forward` returns for cleanup or persistence
### 3. Tools & Toolsets
Create type-safe tools for agents with comprehensive Sorbet support:
```ruby
# Enum-based tool with automatic type conversion
class CalculatorTool < DSPy::Tools::Base
tool_name 'calculator'
tool_description 'Performs arithmetic operations with type-safe enum inputs'
class Operation < T::Enum
enums do
Add = new('add')
Subtract = new('subtract')
Multiply = new('multiply')
Divide = new('divide')
end
end
sig { params(operation: Operation, num1: Float, num2: Float).returns(T.any(Float, String)) }
def call(operation:, num1:, num2:)
case operation
when Operation::Add then num1 + num2
when Operation::Subtract then num1 - num2
when Operation::Multiply then num1 * num2
when Operation::Divide
return "Error: Division by zero" if num2 == 0
num1 / num2
end
end
end
# Multi-tool toolset with rich types
class DataToolset < DSPy::Tools::Toolset
toolset_name "data_processing"
class Format < T::Enum
enums do
JSON = new('json')
CSV = new('csv')
XML = new('xml')
end
end
class ProcessingConfig < T::Struct
const :max_rows, Integer, default: 1000
const :include_headers, T::Boolean, default: true
const :encoding, String, default: 'utf-8'
end
tool :convert, description: "Convert data between formats"
tool :validate, description: "Validate data structure"
sig { params(data: String, from: Format, to: Format, config: T.nilable(ProcessingConfig)).returns(String) }
def convert(data:, from:, to:, config: nil)
config ||= ProcessingConfig.new
"Converted from #{from.serialize} to #{to.serialize} with config: #{config.inspect}"
end
sig { params(data: String, format: Format).returns(T::Hash[String, T.any(String, Integer, T::Boolean)]) }
def validate(data:, format:)
{
valid: true,
format: format.serialize,
row_count: 42,
message: "Data validation passed"
}
end
end
```
### 4. Type System & Discriminators
DSPy.rb uses sophisticated type discrimination for complex data structures:
- **Automatic `_type` field injection** - DSPy adds discriminator fields to structs for type safety
- **Union type support** - T.any() types automatically disambiguated by `_type`
- **Reserved field name** - Avoid defining your own `_type` fields in structs
- **Recursive filtering** - `_type` fields filtered during deserialization at all nesting levels
### 5. Optimization
Improve accuracy with real data:
- **MIPROv2** - Advanced multi-prompt optimization with bootstrap sampling and Bayesian optimization
- **GEPA (Genetic-Pareto Reflective Prompt Evolution)** - Reflection-driven instruction rewrite loop with feedback maps, experiment tracking, and telemetry
- **Evaluation** - Comprehensive framework with built-in and custom metrics, error handling, and batch processing
## Quick Start
```ruby
# Install
gem 'dspy'
# Configure
DSPy.configure do |c|
c.lm = DSPy::LM.new('openai/gpt-4o-mini', api_key: ENV['OPENAI_API_KEY'])
# or use Ollama for local models
# c.lm = DSPy::LM.new('ollama/llama3.2')
end
# Define a task
class SentimentAnalysis < DSPy::Signature
description "Analyze sentiment of text"
input do
const :text, String
end
output do
const :sentiment, String # positive, negative, neutral
const :score, Float # 0.0 to 1.0
end
end
# Use it
analyzer = DSPy::Predict.new(SentimentAnalysis)
result = analyzer.call(text: "This product is amazing!")
puts result.sentiment # => "positive"
puts result.score # => 0.92
```
## Provider Adapter Gems
Add the adapter gems that match the providers you call:
```ruby
# Gemfile
gem 'dspy'
gem 'dspy-openai' # OpenAI, OpenRouter, Ollama
gem 'dspy-anthropic' # Claude
gem 'dspy-gemini' # Gemini
```
Each adapter gem already pulls in the official SDK (`openai`, `anthropic`, `gemini-ai`), so you don't need to add those manually.
## Key URLs
- Homepage: https://oss.vicente.services/dspy.rb/
- GitHub: https://github.com/vicentereig/dspy.rb
- Documentation: https://oss.vicente.services/dspy.rb/getting-started/
## Guidelines for Claude
When helping users with DSPy.rb:
1. **Focus on signatures** - They define the contract with LLMs
2. **Use proper types** - T::Enum for categories, T::Struct for complex data
3. **Leverage automatic type conversion** - Tools and toolsets automatically convert JSON strings to proper Ruby types (enums, structs, arrays, hashes)
4. **Compose modules** - Chain predictors for complex workflows
5. **Create type-safe tools** - Use Sorbet signatures for comprehensive tool parameter validation and conversion
6. **Test thoroughly** - Use RSpec and VCR for reliable tests
7. **Monitor production** - Enable Langfuse by installing the optional o11y gems and setting env vars
## See Also
For complete API reference, advanced patterns, and integration guides, see [REFERENCE.md](REFERENCE.md).
## Version
Current: 0.33.0
Attribution
Comments (0)
No comments yet. Be the first to comment!
