Back to skills
Sparc Methodology
SPARC (Specification, Pseudocode, Architecture, Refinement, Completion) comprehensive development methodology with multi-agent orchestration
3 stars
0 votes
0 copies
0 views
Added 12/19/2025
developmentjavascripttypescriptgojavabashexpresstestingdebuggingrefactoringgit
Works with
claude codeterminalcliapimcp
Install via CLI
$
openskills install airmcp-com/mcp-standardsFiles
SKILL.md
---
name: sparc-methodology
description: SPARC (Specification, Pseudocode, Architecture, Refinement, Completion) comprehensive development methodology with multi-agent orchestration
version: 2.7.0
category: development
tags:
- sparc
- tdd
- architecture
- orchestration
- methodology
- multi-agent
author: Claude Flow
---
# SPARC Methodology - Comprehensive Development Framework
## Overview
SPARC (Specification, Pseudocode, Architecture, Refinement, Completion) is a systematic development methodology integrated with Claude Flow's multi-agent orchestration capabilities. It provides 17 specialized modes for comprehensive software development, from initial research through deployment and monitoring.
## Table of Contents
1. [Core Philosophy](#core-philosophy)
2. [Development Phases](#development-phases)
3. [Available Modes](#available-modes)
4. [Activation Methods](#activation-methods)
5. [Orchestration Patterns](#orchestration-patterns)
6. [TDD Workflows](#tdd-workflows)
7. [Best Practices](#best-practices)
8. [Integration Examples](#integration-examples)
9. [Common Workflows](#common-workflows)
---
## Core Philosophy
SPARC methodology emphasizes:
- **Systematic Approach**: Structured phases from specification to completion
- **Test-Driven Development**: Tests written before implementation
- **Parallel Execution**: Concurrent agent coordination for 2.8-4.4x speed improvements
- **Memory Integration**: Persistent knowledge sharing across agents and sessions
- **Quality First**: Comprehensive reviews, testing, and validation
- **Modular Design**: Clean separation of concerns with clear interfaces
### Key Principles
1. **Specification Before Code**: Define requirements and constraints clearly
2. **Design Before Implementation**: Plan architecture and components
3. **Tests Before Features**: Write failing tests, then make them pass
4. **Review Everything**: Code quality, security, and performance checks
5. **Document Continuously**: Maintain current documentation throughout
---
## Development Phases
### Phase 1: Specification
**Goal**: Define requirements, constraints, and success criteria
- Requirements analysis
- User story mapping
- Constraint identification
- Success metrics definition
- Pseudocode planning
**Key Modes**: `researcher`, `analyzer`, `memory-manager`
### Phase 2: Architecture
**Goal**: Design system structure and component interfaces
- System architecture design
- Component interface definition
- Database schema planning
- API contract specification
- Infrastructure planning
**Key Modes**: `architect`, `designer`, `orchestrator`
### Phase 3: Refinement (TDD Implementation)
**Goal**: Implement features with test-first approach
- Write failing tests
- Implement minimum viable code
- Make tests pass
- Refactor for quality
- Iterate until complete
**Key Modes**: `tdd`, `coder`, `tester`
### Phase 4: Review
**Goal**: Ensure code quality, security, and performance
- Code quality assessment
- Security vulnerability scanning
- Performance profiling
- Best practices validation
- Documentation review
**Key Modes**: `reviewer`, `optimizer`, `debugger`
### Phase 5: Completion
**Goal**: Integration, deployment, and monitoring
- System integration
- Deployment automation
- Monitoring setup
- Documentation finalization
- Knowledge capture
**Key Modes**: `workflow-manager`, `documenter`, `memory-manager`
---
## Available Modes
### Core Orchestration Modes
#### `orchestrator`
Multi-agent task orchestration with TodoWrite/Task/Memory coordination.
**Capabilities**:
- Task decomposition into manageable units
- Agent coordination and resource allocation
- Progress tracking and result synthesis
- Adaptive strategy selection
- Cross-agent communication
**Usage**:
```javascript
mcp__claude-flow__sparc_mode {
mode: "orchestrator",
task_description: "coordinate feature development",
options: { parallel: true, monitor: true }
}
```
#### `swarm-coordinator`
Specialized swarm management for complex multi-agent workflows.
**Capabilities**:
- Topology optimization (mesh, hierarchical, ring, star)
- Agent lifecycle management
- Dynamic scaling based on workload
- Fault tolerance and recovery
- Performance monitoring
#### `workflow-manager`
Process automation and workflow orchestration.
**Capabilities**:
- Workflow definition and execution
- Event-driven triggers
- Sequential and parallel pipelines
- State management
- Error handling and retry logic
#### `batch-executor`
Parallel task execution for high-throughput operations.
**Capabilities**:
- Concurrent file operations
- Batch processing optimization
- Resource pooling
- Load balancing
- Progress aggregation
---
### Development Modes
#### `coder`
Autonomous code generation with batch file operations.
**Capabilities**:
- Feature implementation
- Code refactoring
- Bug fixes and patches
- API development
- Algorithm implementation
**Quality Standards**:
- ES2022+ standards
- TypeScript type safety
- Comprehensive error handling
- Performance optimization
- Security best practices
**Usage**:
```javascript
mcp__claude-flow__sparc_mode {
mode: "coder",
task_description: "implement user authentication with JWT",
options: {
test_driven: true,
parallel_edits: true,
typescript: true
}
}
```
#### `architect`
System design with Memory-based coordination.
**Capabilities**:
- Microservices architecture
- Event-driven design
- Domain-driven design (DDD)
- Hexagonal architecture
- CQRS and Event Sourcing
**Memory Integration**:
- Store architectural decisions
- Share component specifications
- Maintain design consistency
- Track architectural evolution
**Design Patterns**:
- Layered architecture
- Microservices patterns
- Event-driven patterns
- Domain modeling
- Infrastructure as Code
**Usage**:
```javascript
mcp__claude-flow__sparc_mode {
mode: "architect",
task_description: "design scalable e-commerce platform",
options: {
detailed: true,
memory_enabled: true,
patterns: ["microservices", "event-driven"]
}
}
```
#### `tdd`
Test-driven development with comprehensive testing.
**Capabilities**:
- Test-first development
- Red-green-refactor cycle
- Test suite design
- Coverage optimization (target: 90%+)
- Continuous testing
**TDD Workflow**:
1. Write failing test (RED)
2. Implement minimum code
3. Make test pass (GREEN)
4. Refactor for quality (REFACTOR)
5. Repeat cycle
**Testing Strategies**:
- Unit testing (Jest, Mocha, Vitest)
- Integration testing
- End-to-end testing (Playwright, Cypress)
- Performance testing
- Security testing
**Usage**:
```javascript
mcp__claude-flow__sparc_mode {
mode: "tdd",
task_description: "shopping cart feature with payment integration",
options: {
coverage_target: 90,
test_framework: "jest",
e2e_framework: "playwright"
}
}
```
#### `reviewer`
Code review using batch file analysis.
**Capabilities**:
- Code quality assessment
- Security vulnerability detection
- Performance analysis
- Best practices validation
- Documentation review
**Review Criteria**:
- Code correctness and logic
- Design pattern adherence
- Comprehensive error handling
- Test coverage adequacy
- Maintainability and readability
- Security vulnerabilities
- Performance bottlenecks
**Batch Analysis**:
- Parallel file review
- Pattern detection
- Dependency checking
- Consistency validation
- Automated reporting
**Usage**:
```javascript
mcp__claude-flow__sparc_mode {
mode: "reviewer",
task_description: "review authentication module PR #123",
options: {
security_check: true,
performance_check: true,
test_coverage_check: true
}
}
```
---
### Analysis and Research Modes
#### `researcher`
Deep research with parallel WebSearch/WebFetch and Memory coordination.
**Capabilities**:
- Comprehensive information gathering
- Source credibility evaluation
- Trend analysis and forecasting
- Competitive research
- Technology assessment
**Research Methods**:
- Parallel web searches
- Academic paper analysis
- Industry report synthesis
- Expert opinion gathering
- Statistical data compilation
**Memory Integration**:
- Store research findings with citations
- Build knowledge graphs
- Track information sources
- Cross-reference insights
- Maintain research history
**Usage**:
```javascript
mcp__claude-flow__sparc_mode {
mode: "researcher",
task_description: "research microservices best practices 2024",
options: {
depth: "comprehensive",
sources: ["academic", "industry", "news"],
citations: true
}
}
```
#### `analyzer`
Code and data analysis with pattern recognition.
**Capabilities**:
- Static code analysis
- Dependency analysis
- Performance profiling
- Security scanning
- Data pattern recognition
#### `optimizer`
Performance optimization and bottleneck resolution.
**Capabilities**:
- Algorithm optimization
- Database query tuning
- Caching strategy design
- Bundle size reduction
- Memory leak detection
---
### Creative and Support Modes
#### `designer`
UI/UX design with accessibility focus.
**Capabilities**:
- Interface design
- User experience optimization
- Accessibility compliance (WCAG 2.1)
- Design system creation
- Responsive layout design
#### `innovator`
Creative problem-solving and novel solutions.
**Capabilities**:
- Brainstorming and ideation
- Alternative approach generation
- Technology evaluation
- Proof of concept development
- Innovation feasibility analysis
#### `documenter`
Comprehensive documentation generation.
**Capabilities**:
- API documentation (OpenAPI/Swagger)
- Architecture diagrams
- User guides and tutorials
- Code comments and JSDoc
- README and changelog maintenance
#### `debugger`
Systematic debugging and issue resolution.
**Capabilities**:
- Bug reproduction
- Root cause analysis
- Fix implementation
- Regression prevention
- Debug logging optimization
#### `tester`
Comprehensive testing beyond TDD.
**Capabilities**:
- Test suite expansion
- Edge case identification
- Performance testing
- Load testing
- Chaos engineering
#### `memory-manager`
Knowledge management and context preservation.
**Capabilities**:
- Cross-session memory persistence
- Knowledge graph construction
- Context restoration
- Learning pattern extraction
- Decision tracking
---
## Activation Methods
### Method 1: MCP Tools (Preferred in Claude Code)
**Best for**: Integrated Claude Code workflows with full orchestration capabilities
```javascript
// Basic mode execution
mcp__claude-flow__sparc_mode {
mode: "<mode-name>",
task_description: "<task description>",
options: {
// mode-specific options
}
}
// Initialize swarm for complex tasks
mcp__claude-flow__swarm_init {
topology: "hierarchical", // or "mesh", "ring", "star"
strategy: "auto", // or "balanced", "specialized", "adaptive"
maxAgents: 8
}
// Spawn specialized agents
mcp__claude-flow__agent_spawn {
type: "<agent-type>",
capabilities: ["<capability1>", "<capability2>"]
}
// Monitor execution
mcp__claude-flow__swarm_monitor {
swarmId: "current",
interval: 5000
}
```
### Method 2: NPX CLI (Fallback)
**Best for**: Terminal usage or when MCP tools unavailable
```bash
# Execute specific mode
npx claude-flow sparc run <mode> "task description"
# Use alpha features
npx claude-flow@alpha sparc run <mode> "task description"
# List all available modes
npx claude-flow sparc modes
# Get help for specific mode
npx claude-flow sparc help <mode>
# Run with options
npx claude-flow sparc run <mode> "task" --parallel --monitor
# Execute TDD workflow
npx claude-flow sparc tdd "feature description"
# Batch execution
npx claude-flow sparc batch <mode1,mode2,mode3> "task"
# Pipeline execution
npx claude-flow sparc pipeline "task description"
```
### Method 3: Local Installation
**Best for**: Projects with local claude-flow installation
```bash
# If claude-flow is installed locally
./claude-flow sparc run <mode> "task description"
```
---
## Orchestration Patterns
### Pattern 1: Hierarchical Coordination
**Best for**: Complex projects with clear delegation hierarchy
```javascript
// Initialize hierarchical swarm
mcp__claude-flow__swarm_init {
topology: "hierarchical",
maxAgents: 12
}
// Spawn coordinator
mcp__claude-flow__agent_spawn {
type: "coordinator",
capabilities: ["planning", "delegation", "monitoring"]
}
// Spawn specialized workers
mcp__claude-flow__agent_spawn { type: "architect" }
mcp__claude-flow__agent_spawn { type: "coder" }
mcp__claude-flow__agent_spawn { type: "tester" }
mcp__claude-flow__agent_spawn { type: "reviewer" }
```
### Pattern 2: Mesh Coordination
**Best for**: Collaborative tasks requiring peer-to-peer communication
```javascript
mcp__claude-flow__swarm_init {
topology: "mesh",
strategy: "balanced",
maxAgents: 6
}
```
### Pattern 3: Sequential Pipeline
**Best for**: Ordered workflow execution (spec → design → code → test → review)
```javascript
mcp__claude-flow__workflow_create {
name: "development-pipeline",
steps: [
{ mode: "researcher", task: "gather requirements" },
{ mode: "architect", task: "design system" },
{ mode: "coder", task: "implement features" },
{ mode: "tdd", task: "create tests" },
{ mode: "reviewer", task: "review code" }
],
triggers: ["on_step_complete"]
}
```
### Pattern 4: Parallel Execution
**Best for**: Independent tasks that can run concurrently
```javascript
mcp__claude-flow__task_orchestrate {
task: "build full-stack application",
strategy: "parallel",
dependencies: {
backend: [],
frontend: [],
database: [],
tests: ["backend", "frontend"]
}
}
```
### Pattern 5: Adaptive Strategy
**Best for**: Dynamic workloads with changing requirements
```javascript
mcp__claude-flow__swarm_init {
topology: "hierarchical",
strategy: "adaptive", // Auto-adjusts based on workload
maxAgents: 20
}
```
---
## TDD Workflows
### Complete TDD Workflow
```javascript
// Step 1: Initialize TDD swarm
mcp__claude-flow__swarm_init {
topology: "hierarchical",
maxAgents: 8
}
// Step 2: Research and planning
mcp__claude-flow__sparc_mode {
mode: "researcher",
task_description: "research testing best practices for feature X"
}
// Step 3: Architecture design
mcp__claude-flow__sparc_mode {
mode: "architect",
task_description: "design testable architecture for feature X"
}
// Step 4: TDD implementation
mcp__claude-flow__sparc_mode {
mode: "tdd",
task_description: "implement feature X with 90% coverage",
options: {
coverage_target: 90,
test_framework: "jest",
parallel_tests: true
}
}
// Step 5: Code review
mcp__claude-flow__sparc_mode {
mode: "reviewer",
task_description: "review feature X implementation",
options: {
test_coverage_check: true,
security_check: true
}
}
// Step 6: Optimization
mcp__claude-flow__sparc_mode {
mode: "optimizer",
task_description: "optimize feature X performance"
}
```
### Red-Green-Refactor Cycle
```javascript
// RED: Write failing test
mcp__claude-flow__sparc_mode {
mode: "tester",
task_description: "create failing test for shopping cart add item",
options: { expect_failure: true }
}
// GREEN: Minimal implementation
mcp__claude-flow__sparc_mode {
mode: "coder",
task_description: "implement minimal code to pass test",
options: { minimal: true }
}
// REFACTOR: Improve code quality
mcp__claude-flow__sparc_mode {
mode: "coder",
task_description: "refactor shopping cart implementation",
options: { maintain_tests: true }
}
```
---
## Best Practices
### 1. Memory Integration
**Always use Memory for cross-agent coordination**:
```javascript
// Store architectural decisions
mcp__claude-flow__memory_usage {
action: "store",
namespace: "architecture",
key: "api-design-v1",
value: JSON.stringify(apiDesign),
ttl: 86400000 // 24 hours
}
// Retrieve in subsequent agents
mcp__claude-flow__memory_usage {
action: "retrieve",
namespace: "architecture",
key: "api-design-v1"
}
```
### 2. Parallel Operations
**Batch all related operations in single message**:
```javascript
// ✅ CORRECT: All operations together
[Single Message]:
mcp__claude-flow__agent_spawn { type: "researcher" }
mcp__claude-flow__agent_spawn { type: "coder" }
mcp__claude-flow__agent_spawn { type: "tester" }
TodoWrite { todos: [8-10 todos] }
// ❌ WRONG: Multiple messages
Message 1: mcp__claude-flow__agent_spawn { type: "researcher" }
Message 2: mcp__claude-flow__agent_spawn { type: "coder" }
Message 3: TodoWrite { todos: [...] }
```
### 3. Hook Integration
**Every SPARC mode should use hooks**:
```bash
# Before work
npx claude-flow@alpha hooks pre-task --description "implement auth"
# During work
npx claude-flow@alpha hooks post-edit --file "auth.js"
# After work
npx claude-flow@alpha hooks post-task --task-id "task-123"
```
### 4. Test Coverage
**Maintain minimum 90% coverage**:
- Unit tests for all functions
- Integration tests for APIs
- E2E tests for critical flows
- Edge case coverage
- Error path testing
### 5. Documentation
**Document as you build**:
- API documentation (OpenAPI)
- Architecture decision records (ADR)
- Code comments for complex logic
- README with setup instructions
- Changelog for version tracking
### 6. File Organization
**Never save to root folder**:
```
project/
├── src/ # Source code
├── tests/ # Test files
├── docs/ # Documentation
├── config/ # Configuration
├── scripts/ # Utility scripts
└── examples/ # Example code
```
---
## Integration Examples
### Example 1: Full-Stack Development
```javascript
[Single Message - Parallel Agent Execution]:
// Initialize swarm
mcp__claude-flow__swarm_init {
topology: "hierarchical",
maxAgents: 10
}
// Architecture phase
mcp__claude-flow__sparc_mode {
mode: "architect",
task_description: "design REST API with authentication",
options: { memory_enabled: true }
}
// Research phase
mcp__claude-flow__sparc_mode {
mode: "researcher",
task_description: "research authentication best practices"
}
// Implementation phase
mcp__claude-flow__sparc_mode {
mode: "coder",
task_description: "implement Express API with JWT auth",
options: { test_driven: true }
}
// Testing phase
mcp__claude-flow__sparc_mode {
mode: "tdd",
task_description: "comprehensive API tests",
options: { coverage_target: 90 }
}
// Review phase
mcp__claude-flow__sparc_mode {
mode: "reviewer",
task_description: "security and performance review",
options: { security_check: true }
}
// Batch todos
TodoWrite {
todos: [
{content: "Design API schema", status: "completed"},
{content: "Research JWT implementation", status: "completed"},
{content: "Implement authentication", status: "in_progress"},
{content: "Write API tests", status: "pending"},
{content: "Security review", status: "pending"},
{content: "Performance optimization", status: "pending"},
{content: "API documentation", status: "pending"},
{content: "Deployment setup", status: "pending"}
]
}
```
### Example 2: Research-Driven Innovation
```javascript
// Research phase
mcp__claude-flow__sparc_mode {
mode: "researcher",
task_description: "research AI-powered search implementations",
options: {
depth: "comprehensive",
sources: ["academic", "industry"]
}
}
// Innovation phase
mcp__claude-flow__sparc_mode {
mode: "innovator",
task_description: "propose novel search algorithm",
options: { memory_enabled: true }
}
// Architecture phase
mcp__claude-flow__sparc_mode {
mode: "architect",
task_description: "design scalable search system"
}
// Implementation phase
mcp__claude-flow__sparc_mode {
mode: "coder",
task_description: "implement search algorithm",
options: { test_driven: true }
}
// Documentation phase
mcp__claude-flow__sparc_mode {
mode: "documenter",
task_description: "document search system architecture and API"
}
```
### Example 3: Legacy Code Refactoring
```javascript
// Analysis phase
mcp__claude-flow__sparc_mode {
mode: "analyzer",
task_description: "analyze legacy codebase dependencies"
}
// Planning phase
mcp__claude-flow__sparc_mode {
mode: "orchestrator",
task_description: "plan incremental refactoring strategy"
}
// Testing phase (create safety net)
mcp__claude-flow__sparc_mode {
mode: "tester",
task_description: "create comprehensive test suite for legacy code",
options: { coverage_target: 80 }
}
// Refactoring phase
mcp__claude-flow__sparc_mode {
mode: "coder",
task_description: "refactor module X with modern patterns",
options: { maintain_tests: true }
}
// Review phase
mcp__claude-flow__sparc_mode {
mode: "reviewer",
task_description: "validate refactoring maintains functionality"
}
```
---
## Common Workflows
### Workflow 1: Feature Development
```bash
# Step 1: Research and planning
npx claude-flow sparc run researcher "authentication patterns"
# Step 2: Architecture design
npx claude-flow sparc run architect "design auth system"
# Step 3: TDD implementation
npx claude-flow sparc tdd "user authentication feature"
# Step 4: Code review
npx claude-flow sparc run reviewer "review auth implementation"
# Step 5: Documentation
npx claude-flow sparc run documenter "document auth API"
```
### Workflow 2: Bug Investigation
```bash
# Step 1: Analyze issue
npx claude-flow sparc run analyzer "investigate bug #456"
# Step 2: Debug systematically
npx claude-flow sparc run debugger "fix memory leak in service X"
# Step 3: Create tests
npx claude-flow sparc run tester "regression tests for bug #456"
# Step 4: Review fix
npx claude-flow sparc run reviewer "validate bug fix"
```
### Workflow 3: Performance Optimization
```bash
# Step 1: Profile performance
npx claude-flow sparc run analyzer "profile API response times"
# Step 2: Identify bottlenecks
npx claude-flow sparc run optimizer "optimize database queries"
# Step 3: Implement improvements
npx claude-flow sparc run coder "implement caching layer"
# Step 4: Benchmark results
npx claude-flow sparc run tester "performance benchmarks"
```
### Workflow 4: Complete Pipeline
```bash
# Execute full development pipeline
npx claude-flow sparc pipeline "e-commerce checkout feature"
# This automatically runs:
# 1. researcher - Gather requirements
# 2. architect - Design system
# 3. coder - Implement features
# 4. tdd - Create comprehensive tests
# 5. reviewer - Code quality review
# 6. optimizer - Performance tuning
# 7. documenter - Documentation
```
---
## Advanced Features
### Neural Pattern Training
```javascript
// Train patterns from successful workflows
mcp__claude-flow__neural_train {
pattern_type: "coordination",
training_data: "successful_tdd_workflow.json",
epochs: 50
}
```
### Cross-Session Memory
```javascript
// Save session state
mcp__claude-flow__memory_persist {
sessionId: "feature-auth-v1"
}
// Restore in new session
mcp__claude-flow__context_restore {
snapshotId: "feature-auth-v1"
}
```
### GitHub Integration
```javascript
// Analyze repository
mcp__claude-flow__github_repo_analyze {
repo: "owner/repo",
analysis_type: "code_quality"
}
// Manage pull requests
mcp__claude-flow__github_pr_manage {
repo: "owner/repo",
pr_number: 123,
action: "review"
}
```
### Performance Monitoring
```javascript
// Real-time swarm monitoring
mcp__claude-flow__swarm_monitor {
swarmId: "current",
interval: 5000
}
// Bottleneck analysis
mcp__claude-flow__bottleneck_analyze {
component: "api-layer",
metrics: ["latency", "throughput", "errors"]
}
// Token usage tracking
mcp__claude-flow__token_usage {
operation: "feature-development",
timeframe: "24h"
}
```
---
## Performance Benefits
**Proven Results**:
- **84.8%** SWE-Bench solve rate
- **32.3%** token reduction through optimizations
- **2.8-4.4x** speed improvement with parallel execution
- **27+** neural models for pattern learning
- **90%+** test coverage standard
---
## Support and Resources
- **Documentation**: https://github.com/ruvnet/claude-flow
- **Issues**: https://github.com/ruvnet/claude-flow/issues
- **NPM Package**: https://www.npmjs.com/package/claude-flow
- **Community**: Discord server (link in repository)
---
## Quick Reference
### Most Common Commands
```bash
# List modes
npx claude-flow sparc modes
# Run specific mode
npx claude-flow sparc run <mode> "task"
# TDD workflow
npx claude-flow sparc tdd "feature"
# Full pipeline
npx claude-flow sparc pipeline "task"
# Batch execution
npx claude-flow sparc batch <modes> "task"
```
### Most Common MCP Calls
```javascript
// Initialize swarm
mcp__claude-flow__swarm_init { topology: "hierarchical" }
// Execute mode
mcp__claude-flow__sparc_mode { mode: "coder", task_description: "..." }
// Monitor progress
mcp__claude-flow__swarm_monitor { interval: 5000 }
// Store in memory
mcp__claude-flow__memory_usage { action: "store", key: "...", value: "..." }
```
---
Remember: **SPARC = Systematic, Parallel, Agile, Refined, Complete**
Attribution
Comments (0)
No comments yet. Be the first to comment!
