Back to skills
Observability
Structured logging, debugging techniques (pdb/ipdb), profiling (cProfile/line_profiler), stack traces, performance monitoring, and metrics. Use when adding logging, debugging issues, or optimizing performance.
7 stars
0 votes
0 copies
0 views
Added 12/19/2025
developmentpythonbashtestingdebuggingperformancedocumentation
Install via CLI
$
openskills install akaszubski/autonomous-devFiles
SKILL.md
---
name: observability
version: 1.0.0
type: knowledge
description: Structured logging, debugging techniques (pdb/ipdb), profiling (cProfile/line_profiler), stack traces, performance monitoring, and metrics. Use when adding logging, debugging issues, or optimizing performance.
keywords: logging, debug, profiling, performance, monitoring, metrics, pdb, cProfile, observability, tracing
auto_activate: true
allowed-tools: [Read, Grep, Glob, Bash]
---
# Observability Skill
Comprehensive guide to logging, debugging, profiling, and performance monitoring in Python applications.
## When This Skill Activates
- Adding logging to code
- Debugging production issues
- Profiling performance bottlenecks
- Monitoring application metrics
- Analyzing stack traces
- Performance optimization
- Keywords: "logging", "debug", "profiling", "performance", "monitoring"
---
## Core Concepts
### 1. Structured Logging
Structured logging with JSON format for machine-readable logs and rich context.
**Why Structured Logging?**
- Machine-parseable (easy to search, filter, aggregate)
- Context-rich (attach metadata to log entries)
- Consistent format across services
**Key Features**:
- JSON-formatted logs
- Log levels (DEBUG, INFO, WARNING, ERROR, CRITICAL)
- Context logging with extra metadata
- Best practices for meaningful logs
**Example**:
```python
import logging
import json
logger = logging.getLogger(__name__)
logger.info("User action", extra={
"user_id": 123,
"action": "login",
"ip": "192.168.1.1"
})
```
**See**: `docs/structured-logging.md` for Python logging setup and patterns
---
### 2. Debugging Techniques
Interactive debugging with pdb/ipdb and effective debugging strategies.
**Tools**:
- **Print debugging** - Quick and simple
- **pdb** - Python's built-in debugger
- **ipdb** - IPython-enhanced debugger
- **Post-mortem debugging** - Debug after crash
**pdb Commands**:
- `n` (next) - Execute current line
- `s` (step) - Step into function
- `c` (continue) - Continue execution
- `p variable` - Print variable value
- `l` - List source code
- `q` - Quit debugger
**Example**:
```python
import pdb; pdb.set_trace() # Debugger starts here
```
**See**: `docs/debugging.md` for interactive debugging patterns
---
### 3. Profiling
CPU and memory profiling to identify performance bottlenecks.
**Tools**:
- **cProfile** - CPU profiling (built-in)
- **line_profiler** - Line-by-line CPU profiling
- **memory_profiler** - Memory usage analysis
- **py-spy** - Sampling profiler (no code changes)
**cProfile Example**:
```bash
python -m cProfile -s cumulative script.py
```
**Profile Decorator**:
```python
import cProfile
import pstats
def profile(func):
def wrapper(*args, **kwargs):
profiler = cProfile.Profile()
profiler.enable()
result = func(*args, **kwargs)
profiler.disable()
stats = pstats.Stats(profiler)
stats.sort_stats('cumulative')
stats.print_stats(10) # Top 10 functions
return result
return wrapper
@profile
def slow_function():
# Your code here
pass
```
**See**: `docs/profiling.md` for comprehensive profiling techniques
---
### 4. Monitoring & Metrics
Performance monitoring, timing decorators, and simple metrics.
**Timing Patterns**:
- **Timing decorator** - Measure function execution time
- **Context manager timer** - Measure code block duration
- **Performance assertions** - Fail if too slow
**Simple Metrics**:
- **Counters** - Track event occurrences
- **Histograms** - Track value distributions
**Example**:
```python
import time
from functools import wraps
def timer(func):
@wraps(func)
def wrapper(*args, **kwargs):
start = time.time()
result = func(*args, **kwargs)
duration = time.time() - start
print(f"{func.__name__} took {duration:.2f}s")
return result
return wrapper
@timer
def process_data():
# Your code here
pass
```
**See**: `docs/monitoring-metrics.md` for stack traces, timers, and metrics
---
### 5. Best Practices & Anti-Patterns
Debugging strategies and logging anti-patterns to avoid.
**Debugging Best Practices**:
1. **Binary Search Debugging** - Narrow down the problem area
2. **Rubber Duck Debugging** - Explain the problem to someone (or something)
3. **Add Assertions** - Catch bugs early
4. **Simplify and Isolate** - Reproduce with minimal code
**Logging Anti-Patterns to Avoid**:
- Logging sensitive data (passwords, tokens)
- Logging in loops (use counters instead)
- No context in error logs
- Inconsistent log formats
- Too verbose logging (noise)
**See**: `docs/best-practices-antipatterns.md` for detailed strategies
---
## Quick Reference
| Tool | Use Case | Details |
|------|----------|---------|
| Structured Logging | Production logs | `docs/structured-logging.md` |
| pdb/ipdb | Interactive debugging | `docs/debugging.md` |
| cProfile | CPU profiling | `docs/profiling.md` |
| line_profiler | Line-by-line profiling | `docs/profiling.md` |
| memory_profiler | Memory analysis | `docs/profiling.md` |
| Timer decorator | Function timing | `docs/monitoring-metrics.md` |
| Context timer | Code block timing | `docs/monitoring-metrics.md` |
---
## Logging Cheat Sheet
```python
import logging
# Setup
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Usage
logger.debug("Debug message") # Detailed diagnostic
logger.info("Info message") # General information
logger.warning("Warning message") # Warning (recoverable)
logger.error("Error message") # Error (handled)
logger.critical("Critical message") # Critical (unrecoverable)
# With context
logger.info("User action", extra={"user_id": 123, "action": "login"})
```
---
## Debugging Cheat Sheet
```python
# pdb
import pdb; pdb.set_trace()
# ipdb (enhanced)
import ipdb; ipdb.set_trace()
# Post-mortem (debug after crash)
import pdb, sys
try:
# Your code
pass
except Exception:
pdb.post_mortem(sys.exc_info()[2])
```
---
## Profiling Cheat Sheet
```bash
# CPU profiling
python -m cProfile -s cumulative script.py
# Line profiling
kernprof -l -v script.py
# Memory profiling
python -m memory_profiler script.py
# Sampling profiler (no code changes)
py-spy top --pid 12345
```
---
## Progressive Disclosure
This skill uses progressive disclosure to prevent context bloat:
- **Index** (this file): High-level concepts and quick reference (<500 lines)
- **Detailed docs**: `docs/*.md` files with implementation details (loaded on-demand)
**Available Documentation**:
- `docs/structured-logging.md` - Logging setup, levels, JSON format, best practices
- `docs/debugging.md` - Print debugging, pdb/ipdb, post-mortem debugging
- `docs/profiling.md` - cProfile, line_profiler, memory_profiler, py-spy
- `docs/monitoring-metrics.md` - Stack traces, timing patterns, simple metrics
- `docs/best-practices-antipatterns.md` - Debugging strategies and logging anti-patterns
---
## Cross-References
**Related Skills**:
- **error-handling-patterns** - Error handling best practices
- **python-standards** - Python coding conventions
- **testing-guide** - Testing and debugging strategies
- **performance-optimization** - Performance tuning techniques
**Related Tools**:
- **Python logging** - Standard library logging module
- **pdb/ipdb** - Interactive debuggers
- **cProfile** - CPU profiling
- **memory_profiler** - Memory analysis
- **py-spy** - Sampling profiler
---
## Key Takeaways
1. **Use structured logging** - JSON format for machine-readable logs
2. **Log at appropriate levels** - DEBUG < INFO < WARNING < ERROR < CRITICAL
3. **Include context** - Add metadata to logs (user_id, request_id, etc.)
4. **Don't log sensitive data** - Passwords, tokens, PII
5. **Use pdb/ipdb for debugging** - Interactive debugging is powerful
6. **Profile before optimizing** - Measure to find real bottlenecks
7. **Use cProfile for CPU profiling** - Identify slow functions
8. **Use line_profiler for line-level profiling** - Fine-grained analysis
9. **Use memory_profiler for memory leaks** - Track memory usage
10. **Time critical sections** - Decorator or context manager
11. **Binary search debugging** - Narrow down problem area
12. **Simplify and isolate** - Reproduce with minimal code
Attribution
Comments (0)
No comments yet. Be the first to comment!
