Back to skills
State Management Patterns
State persistence patterns for autonomous-dev including JSON persistence, atomic writes, file locking, crash recovery, and state versioning. Use when implementing stateful libraries or features requiring persistent state.
7 stars
0 votes
0 copies
0 views
Added 12/19/2025
developmentpythongitapisecurityperformancedocumentation
Works with
claude codeapi
Install via CLI
$
openskills install akaszubski/autonomous-devFiles
SKILL.md
---
name: state-management-patterns
version: 1.0.0
type: knowledge
description: State persistence patterns for autonomous-dev including JSON persistence, atomic writes, file locking, crash recovery, and state versioning. Use when implementing stateful libraries or features requiring persistent state.
keywords: state, persistence, JSON, atomic, file locking, crash recovery, state versioning, batch state, user state, checkpoint, session tracking
auto_activate: true
allowed-tools: [Read]
---
# State Management Patterns Skill
Standardized state management and persistence patterns for the autonomous-dev plugin ecosystem. Ensures reliable, crash-resistant state persistence across Claude restarts and system failures.
## When This Skill Activates
- Implementing state persistence
- Managing crash recovery
- Handling concurrent state access
- Versioning state schemas
- Tracking batch operations
- Managing user preferences
- Keywords: "state", "persistence", "JSON", "atomic", "crash recovery", "checkpoint"
---
## Core Patterns
### 1. JSON Persistence with Atomic Writes
**Definition**: Store state in JSON files with atomic writes to prevent corruption on crash.
**Pattern**:
```python
import json
from pathlib import Path
from typing import Dict, Any
import tempfile
import os
def save_state_atomic(state: Dict[str, Any], state_file: Path) -> None:
"""Save state with atomic write to prevent corruption.
Args:
state: State dictionary to persist
state_file: Target state file path
Security:
- Atomic Write: Prevents partial writes on crash
- Temp File: Write to temp, then rename (atomic operation)
- Permissions: Preserves file permissions
"""
# Write to temporary file first
temp_fd, temp_path = tempfile.mkstemp(
dir=state_file.parent,
prefix=f".{state_file.name}.",
suffix=".tmp"
)
try:
# Write JSON to temp file
with os.fdopen(temp_fd, 'w') as f:
json.dump(state, f, indent=2)
# Atomic rename (overwrites target)
os.replace(temp_path, state_file)
except Exception:
# Clean up temp file on failure
if Path(temp_path).exists():
Path(temp_path).unlink()
raise
```
**See**: `docs/json-persistence.md`, `examples/batch-state-example.py`
---
### 2. File Locking for Concurrent Access
**Definition**: Use file locks to prevent concurrent modification of state files.
**Pattern**:
```python
import fcntl
import json
from pathlib import Path
from contextlib import contextmanager
@contextmanager
def file_lock(filepath: Path):
"""Acquire exclusive file lock for state file.
Args:
filepath: Path to file to lock
Yields:
Open file handle with exclusive lock
Example:
>>> with file_lock(state_file) as f:
... state = json.load(f)
... state['count'] += 1
... f.seek(0)
... f.truncate()
... json.dump(state, f)
"""
with filepath.open('r+') as f:
fcntl.flock(f.fileno(), fcntl.LOCK_EX)
try:
yield f
finally:
fcntl.flock(f.fileno(), fcntl.LOCK_UN)
```
**See**: `docs/file-locking.md`, `templates/file-lock-template.py`
---
### 3. Crash Recovery Pattern
**Definition**: Design state to enable recovery after crashes or interruptions.
**Principles**:
- State includes enough context to resume operations
- Progress tracking enables "resume from last checkpoint"
- State validation detects corruption
- Migration paths handle schema changes
**Example**:
```python
@dataclass
class BatchState:
"""Batch processing state with crash recovery support.
Attributes:
batch_id: Unique batch identifier
features: List of all features to process
current_index: Index of current feature
completed: List of completed feature names
failed: List of failed feature names
created_at: State creation timestamp
last_updated: Last update timestamp
"""
batch_id: str
features: List[str]
current_index: int = 0
completed: List[str] = None
failed: List[str] = None
created_at: str = None
last_updated: str = None
def __post_init__(self):
if self.completed is None:
self.completed = []
if self.failed is None:
self.failed = []
if self.created_at is None:
self.created_at = datetime.now().isoformat()
self.last_updated = datetime.now().isoformat()
```
**See**: `docs/crash-recovery.md`, `examples/crash-recovery-example.py`
---
### 4. State Versioning and Migration
**Definition**: Version state schemas to enable graceful upgrades.
**Pattern**:
```python
STATE_VERSION = "2.0.0"
def migrate_state(state: Dict[str, Any]) -> Dict[str, Any]:
"""Migrate state from old version to current.
Args:
state: State dictionary (any version)
Returns:
Migrated state (current version)
"""
version = state.get("version", "1.0.0")
if version == "1.0.0":
# Migrate 1.0.0 → 1.1.0
state = _migrate_1_0_to_1_1(state)
version = "1.1.0"
if version == "1.1.0":
# Migrate 1.1.0 → 2.0.0
state = _migrate_1_1_to_2_0(state)
version = "2.0.0"
state["version"] = STATE_VERSION
return state
```
**See**: `docs/state-versioning.md`, `templates/state-manager-template.py`
---
## Real-World Examples
### BatchStateManager Pattern
From `plugins/autonomous-dev/lib/batch_state_manager.py`:
**Features**:
- JSON persistence with atomic writes
- Crash recovery via --resume flag
- Progress tracking (completed/failed features)
- Automatic context clearing at 150K tokens
- State versioning for schema upgrades
**Usage**:
```python
# Create batch state
manager = BatchStateManager.create(["feat1", "feat2", "feat3"])
manager.batch_id # "batch-20251116-123456"
# Process features
for feature in manager.features:
if manager.should_clear_context():
# Clear context at 150K tokens
manager.record_context_clear()
try:
# Process feature
result = process_feature(feature)
manager.mark_completed(feature)
except Exception as e:
manager.mark_failed(feature, str(e))
manager.save() # Atomic write
# Resume after crash
manager = BatchStateManager.load("batch-20251116-123456")
next_feature = manager.get_next_feature() # Skips completed
```
## Checkpoint Integration (Issue #79)
Agents save checkpoints using the portable pattern:
### Portable Pattern (Works Anywhere)
```python
from pathlib import Path
import sys
# Portable path detection
current = Path.cwd()
while current != current.parent:
if (current / ".git").exists():
project_root = current
break
current = current.parent
# Add lib to path
lib_path = project_root / "plugins/autonomous-dev/lib"
if lib_path.exists():
sys.path.insert(0, str(lib_path))
try:
from agent_tracker import AgentTracker
success = AgentTracker.save_agent_checkpoint(
agent_name='my-agent',
message='Task completed - found 5 patterns',
tools_used=['Read', 'Grep', 'WebSearch']
)
print(f"Checkpoint: {'saved' if success else 'skipped'}")
except ImportError:
print("ℹ️ Checkpoint skipped (user project)")
```
### Features
- **Portable**: Works from any directory (user projects, subdirectories, fresh installs)
- **No hardcoded paths**: Uses dynamic project root detection
- **Graceful degradation**: Returns False, doesn't block workflow
- **Security validated**: Path validation (CWE-22), no subprocess (CWE-78)
### Design Patterns
- Progressive Enhancement: Works with or without tracking infrastructure
- Non-blocking: Never raises exceptions
- Two-tier: Library imports instead of subprocess calls
**See**: LIBRARIES.md Section 24 (agent_tracker.py), DEVELOPMENT.md Scenario 2.5, docs/LIBRARIES.md for API
---
## Usage Guidelines
### For Library Authors
When implementing stateful features:
1. **Use JSON persistence** with atomic writes
2. **Add file locking** for concurrent access protection
3. **Design for crash recovery** with resumable state
4. **Version your state** for schema evolution
5. **Validate on load** to detect corruption
### For Claude
When creating or analyzing stateful libraries:
1. **Load this skill** when keywords match ("state", "persistence", etc.)
2. **Follow persistence patterns** for reliability
3. **Implement crash recovery** for long-running operations
4. **Use atomic operations** to prevent corruption
5. **Reference templates** in `templates/` directory
### Token Savings
By centralizing state management patterns in this skill:
- **Before**: ~50 tokens per library for inline state management docs
- **After**: ~10 tokens for skill reference comment
- **Savings**: ~40 tokens per library
- **Total**: ~400 tokens across 10 libraries (4-5% reduction)
---
## Progressive Disclosure
This skill uses Claude Code 2.0+ progressive disclosure architecture:
- **Metadata** (frontmatter): Always loaded (~180 tokens)
- **Full content**: Loaded only when keywords match
- **Result**: Efficient context usage, scales to 100+ skills
When you use terms like "state management", "persistence", "crash recovery", or "atomic writes", Claude Code automatically loads the full skill content.
---
## Templates and Examples
### Templates (reusable code structures)
- `templates/state-manager-template.py`: Complete state manager class
- `templates/atomic-write-template.py`: Atomic write implementation
- `templates/file-lock-template.py`: File locking utilities
### Examples (real implementations)
- `examples/batch-state-example.py`: BatchStateManager pattern
- `examples/user-state-example.py`: UserStateManager pattern
- `examples/crash-recovery-example.py`: Crash recovery demonstration
### Documentation (detailed guides)
- `docs/json-persistence.md`: JSON storage patterns
- `docs/atomic-writes.md`: Atomic write implementation
- `docs/file-locking.md`: Concurrent access protection
- `docs/crash-recovery.md`: Recovery strategies
---
## Cross-References
This skill integrates with other autonomous-dev skills:
- **library-design-patterns**: Two-tier design, progressive enhancement
- **error-handling-patterns**: Exception handling and recovery
- **security-patterns**: File permissions and path validation
**See**: `skills/library-design-patterns/`, `skills/error-handling-patterns/`
---
## Maintenance
This skill should be updated when:
- New state management patterns emerge
- State schema versioning needs change
- Concurrency patterns evolve
- Performance optimizations discovered
**Last Updated**: 2025-11-16 (Phase 8.8 - Initial creation)
**Version**: 1.0.0
Attribution
Comments (0)
No comments yet. Be the first to comment!
