Back to skills
Performance Scaling
Cross-model performance optimization and scaling configurations for autonomous agents
9 stars
0 votes
0 copies
0 views
Added 12/19/2025
developmentjavascriptgojavaperformance
Install via CLI
$
openskills install bejranonda/LLM-Autonomous-Agent-Plugin-for-ClaudeFiles
SKILL.md
---
name: performance-scaling
description: Cross-model performance optimization and scaling configurations for autonomous agents
version: 1.0.0
---
## Overview
This skill provides performance scaling and optimization strategies for autonomous agents across different LLM models, ensuring optimal execution characteristics while maintaining quality standards.
## Model Performance Profiles
### Claude Sonnet 4.5 Performance Profile
```json
{
"model": "claude-sonnet-4.5",
"base_performance": {
"execution_speed": "fast",
"reasoning_depth": "high",
"context_switching": "excellent",
"adaptability": "very_high"
},
"scaling_factors": {
"time_multiplier": 1.0,
"quality_target": 90,
"complexity_handling": 0.9,
"parallel_processing": 1.2
},
"optimization_strategies": [
"context_merging",
"predictive_delegation",
"pattern_weighting",
"adaptive_quality_thresholds"
]
}
```
### Claude Haiku 4.5 Performance Profile
```json
{
"model": "claude-haiku-4.5",
"base_performance": {
"execution_speed": "very_fast",
"reasoning_depth": "medium",
"context_switching": "good",
"adaptability": "high"
},
"scaling_factors": {
"time_multiplier": 0.8,
"quality_target": 88,
"complexity_handling": 1.1,
"parallel_processing": 1.0
},
"optimization_strategies": [
"fast_execution",
"selective_processing",
"efficient_delegation",
"streamlined_quality_checks"
]
}
```
### Claude Opus 4.1 Performance Profile
```json
{
"model": "claude-opus-4.1",
"base_performance": {
"execution_speed": "very_fast",
"reasoning_depth": "very_high",
"context_switching": "excellent",
"adaptability": "maximum"
},
"scaling_factors": {
"time_multiplier": 0.9,
"quality_target": 95,
"complexity_handling": 0.8,
"parallel_processing": 1.4
},
"optimization_strategies": [
"anticipatory_execution",
"enhanced_parallelization",
"predictive_caching",
"advanced_pattern_recognition"
]
}
```
### GLM-4.6 Performance Profile
```json
{
"model": "glm-4.6",
"base_performance": {
"execution_speed": "moderate",
"reasoning_depth": "medium",
"context_switching": "good",
"adaptability": "medium"
},
"scaling_factors": {
"time_multiplier": 1.25,
"quality_target": 88,
"complexity_handling": 1.2,
"parallel_processing": 0.8
},
"optimization_strategies": [
"structured_sequencing",
"explicit_instruction_optimization",
"step_by_step_validation",
"clear_handoff_protocols"
]
}
```
## Performance Scaling Strategies
### Time-Based Scaling
**Execution Time Allocation**:
```javascript
function scaleExecutionTime(baseTime, model, complexity) {
const profiles = {
'claude-sonnet': { multiplier: 1.0, complexity_factor: 0.9 },
'claude-4.5': { multiplier: 0.9, complexity_factor: 0.8 },
'glm-4.6': { multiplier: 1.25, complexity_factor: 1.2 },
'fallback': { multiplier: 1.5, complexity_factor: 1.4 }
};
const profile = profiles[model] || profiles.fallback;
return baseTime * profile.multiplier * (1 + complexity * profile.complexity_factor);
}
```
**Timeout Adjustments**:
- **Claude Sonnet**: Standard timeouts with 10% buffer
- **Claude 4.5**: Reduced timeouts with 5% buffer
- **GLM-4.6**: Extended timeouts with 25% buffer
- **Fallback**: Conservative timeouts with 50% buffer
### Quality Target Scaling
**Model-Specific Quality Targets**:
```javascript
function getQualityTarget(model, taskType) {
const baseTargets = {
'claude-sonnet': { simple: 85, complex: 90, critical: 95 },
'claude-4.5': { simple: 88, complex: 92, critical: 96 },
'glm-4.6': { simple: 82, complex: 88, critical: 92 },
'fallback': { simple: 80, complex: 85, critical: 90 }
};
return baseTargets[model]?.[taskType] || baseTargets.fallback.complex;
}
```
**Quality Assessment Adaptation**:
- **Claude Models**: Emphasize contextual understanding and pattern recognition
- **GLM Models**: Emphasize structured accuracy and procedural correctness
### Resource Scaling
**Memory Management**:
```javascript
function scaleMemoryUsage(model, taskSize) {
const profiles = {
'claude-sonnet': { base_memory: 'medium', scaling_factor: 1.1 },
'claude-4.5': { base_memory: 'medium', scaling_factor: 1.0 },
'glm-4.6': { base_memory: 'high', scaling_factor: 1.3 },
'fallback': { base_memory: 'high', scaling_factor: 1.5 }
};
const profile = profiles[model] || profiles.fallback;
return allocateMemory(profile.base_memory, taskSize * profile.scaling_factor);
}
```
**Concurrent Task Limits**:
- **Claude Sonnet**: 3-4 concurrent tasks
- **Claude 4.5**: 4-5 concurrent tasks
- **GLM-4.6**: 2-3 concurrent tasks
- **Fallback**: 1-2 concurrent tasks
## Adaptive Optimization Algorithms
### Dynamic Performance Adjustment
**Real-Time Performance Monitoring**:
```javascript
function monitorPerformance(model, currentMetrics) {
const baseline = getPerformanceBaseline(model);
const variance = calculateVariance(currentMetrics, baseline);
if (variance > 0.2) {
// Performance deviating significantly from baseline
return adjustPerformanceParameters(model, currentMetrics);
}
return currentMetrics;
}
```
**Automatic Parameter Tuning**:
```javascript
function tuneParameters(model, taskHistory) {
const performance = analyzeTaskPerformance(taskHistory);
const adjustments = calculateOptimalAdjustments(model, performance);
return {
timeout_adjustments: adjustments.timeouts,
quality_thresholds: adjustments.quality,
resource_allocation: adjustments.resources,
delegation_strategy: adjustments.delegation
};
}
```
### Learning-Based Optimization
**Pattern Recognition for Performance**:
```javascript
function learnPerformancePatterns(executionHistory) {
const patterns = {
successful_executions: extractSuccessPatterns(executionHistory),
failed_executions: extractFailurePatterns(executionHistory),
optimization_opportunities: identifyOptimizations(executionHistory)
};
return generatePerformanceRecommendations(patterns);
}
```
**Model-Specific Learning**:
- **Claude Models**: Learn from nuanced patterns and contextual factors
- **GLM Models**: Learn from structured procedures and clear success/failure patterns
## Performance Metrics and KPIs
### Core Performance Indicators
**Execution Metrics**:
- **Task Completion Time**: Time from task start to completion
- **Quality Achievement**: Final quality score vs target
- **Resource Efficiency**: Memory and CPU usage efficiency
- **Error Rate**: Frequency of errors requiring recovery
**Model-Specific KPIs**:
```javascript
const modelKPIs = {
'claude-sonnet': {
'context_switching_efficiency': '>= 90%',
'pattern_recognition_accuracy': '>= 85%',
'adaptive_decision_quality': '>= 88%'
},
'claude-4.5': {
'predictive_accuracy': '>= 80%',
'anticipatory_optimization': '>= 75%',
'enhanced_reasoning_utilization': '>= 90%'
},
'glm-4.6': {
'procedural_accuracy': '>= 95%',
'structured_execution_compliance': '>= 98%',
'explicit_instruction_success': '>= 92%'
}
};
```
### Performance Benchmarking
**Comparative Analysis**:
```javascript
function benchmarkPerformance(model, testSuite) {
const results = runPerformanceTests(model, testSuite);
const baseline = getIndustryBaseline(model);
return {
relative_performance: results.score / baseline.score,
improvement_opportunities: identifyImprovements(results, baseline),
model_strengths: analyzeModelStrengths(results),
optimization_recommendations: generateRecommendations(results)
};
}
```
## Performance Optimization Techniques
### Model-Specific Optimizations
**Claude Sonnet Optimizations**:
1. **Context Merging**: Combine related contexts to reduce switching overhead
2. **Weight-Based Decision Making**: Use historical success patterns for decisions
3. **Progressive Loading**: Load skills progressively based on immediate needs
4. **Adaptive Quality Thresholds**: Adjust quality targets based on task complexity
**Claude 4.5 Optimizations**:
1. **Anticipatory Execution**: Start likely tasks before explicit request
2. **Enhanced Parallelization**: Maximize concurrent task execution
3. **Predictive Caching**: Cache likely-needed resources proactively
4. **Advanced Pattern Matching**: Use complex pattern recognition for optimization
**GLM-4.6 Optimizations**:
1. **Structured Sequencing**: Optimize task order for efficiency
2. **Explicit Instruction Optimization**: Minimize ambiguity in instructions
3. **Step-by-Step Validation**: Validate each step before proceeding
4. **Clear Handoff Protocols**: Ensure clean transitions between tasks
### Universal Optimizations
**Cross-Model Techniques**:
1. **Resource Pooling**: Share resources across compatible tasks
2. **Intelligent Caching**: Cache results based on usage patterns
3. **Batch Processing**: Group similar operations for efficiency
4. **Lazy Loading**: Load resources only when needed
## Implementation Guidelines
### Performance Configuration Loading
```javascript
function loadPerformanceConfiguration(model) {
const baseConfig = getBasePerformanceProfile(model);
const historicalData = getHistoricalPerformanceData(model);
const currentContext = assessCurrentContext();
return mergeAndOptimizeConfiguration(baseConfig, historicalData, currentContext);
}
```
### Runtime Performance Adjustment
```javascript
function adjustRuntimePerformance(currentMetrics, targetProfile) {
const adjustments = calculateNeededAdjustments(currentMetrics, targetProfile);
return {
timeout_adjustments: adjustments.timeouts,
quality_modifications: adjustments.quality,
resource_reallocation: adjustments.resources,
strategy_changes: adjustments.strategy
};
}
```
### Performance Monitoring and Alerting
```javascript
function monitorPerformanceHealth(model, metrics) {
const healthScore = calculatePerformanceHealth(model, metrics);
if (healthScore < 0.8) {
return {
status: 'degraded',
recommendations: generateImprovementActions(model, metrics),
automatic_adjustments: applyAutomaticOptimizations(model, metrics)
};
}
return { status: 'healthy', score: healthScore };
}
```
## Usage Guidelines
### When to Apply Performance Scaling
1. **Task Initialization**: Set performance targets based on model and task type
2. **Mid-Execution Adjustment**: Adapt parameters based on current performance
3. **Resource Optimization**: Scale resource allocation based on availability
4. **Quality-Performance Tradeoffs**: Balance speed vs accuracy based on requirements
### Integration Points
- **Orchestrator Agent**: Use for task planning and resource allocation
- **All Specialized Agents**: Use for model-specific execution optimization
- **Quality Controller**: Use for adaptive quality target setting
- **Background Task Manager**: Use for concurrent task optimization
This skill ensures optimal performance across all supported models while maintaining high quality standards and adapting to varying task requirements.Attribution
Comments (0)
No comments yet. Be the first to comment!
