Back to skills
Lark Agent Simple
Token-efficient Lark task creation from markdown test files. Uses 60-70% fewer tokens than lark-agent by executing MCP calls directly. ACTIVATE THIS SKILL when user: - Says "create lark tasks" or "lark agent simple" or "efficient lark" - Wants token-efficient Lark task creation - Has a test file and wants it in Lark with minimal overhead WORKFLOW: 1. Parse markdown file to compact JSON (data only, no workflow) 2. Execute Lark MCP calls directly from slash command 3. Report results DO NOT c...
3 stars
0 votes
0 copies
0 views
Added 12/19/2025
developmentpythonbashtestingapidocumentation
Works with
claude codeapimcp
Install via CLI
$
openskills install Interstellar-code/claud-skillsFiles
SKILL.md
---
name: lark-agent-simple
description: |
Token-efficient Lark task creation from markdown test files.
Uses 60-70% fewer tokens than lark-agent by executing MCP calls directly.
ACTIVATE THIS SKILL when user:
- Says "create lark tasks" or "lark agent simple" or "efficient lark"
- Wants token-efficient Lark task creation
- Has a test file and wants it in Lark with minimal overhead
WORKFLOW:
1. Parse markdown file to compact JSON (data only, no workflow)
2. Execute Lark MCP calls directly from slash command
3. Report results
DO NOT create test plans yourself - only process existing markdown files.
## šØ **VISUAL OUTPUT FORMATTING**
**CRITICAL: All lark-agent-simple output MUST use the colored-output formatter skill!**
```bash
bash .claude/skills/colored-output/color.sh skill-header "lark-agent-simple" "Creating Lark tasks..."
bash .claude/skills/colored-output/color.sh progress "" "Parsing test file"
bash .claude/skills/colored-output/color.sh success "" "Tasks created"
```
---
version: 1.0.0
author: Claude Code
tags: [lark, testing, automation, markdown, token-efficient, mcp]
---
# Lark Agent Simple Skill
Token-efficient Lark task creation from markdown test files with **60-70% token reduction** compared to the original lark-agent.
## Overview
The Lark Agent Simple skill provides an optimized workflow for:
1. **Parsing** markdown test files into minimal JSON (data only)
2. **Executing** Lark MCP calls directly (no workflow generation)
3. **Creating** hierarchical Lark tasks (3-level structure)
4. **Reporting** results with summary
This skill eliminates the token overhead of workflow generation by moving execution logic from Python to the slash command.
## Architecture
### Token Efficiency Design
**Traditional Approach (lark-agent):**
```
Markdown ā Python ā Workflow Plan JSON (2000-5000 tokens)
ā Claude interprets plan ā Claude executes MCP
Total: 10,000-25,000 tokens
```
**Optimized Approach (lark-agent-simple):**
```
Markdown ā Python ā Minimal Data JSON (500-1000 tokens)
ā Claude executes MCP directly
Total: 3,000-8,000 tokens
```
**Savings: 60-70% token reduction**
### Component Roles
1. **Python Parser** (`lark_agent_simple.py`)
- Role: Data transformation only (markdown ā JSON)
- Output: Minimal structured data (no workflow instructions)
- Size: ~150 lines (vs 250+ in original)
2. **Slash Command** (`.claude/commands/lark-agent-simple.md`)
- Role: Execution logic
- Contains: Direct MCP call instructions
- Advantage: Claude executes immediately (no interpretation)
3. **SKILL.md** (this file)
- Role: Documentation and activation guide
- Contains: Usage instructions, examples, reference
## When to Use This Skill
Activate this skill when user:
- Wants to create Lark tasks from markdown test files
- Needs token-efficient execution
- Mentions "lark agent simple" or "efficient lark"
- Has existing test documentation in markdown format
- Wants to avoid token overhead of workflow generation
## Usage
### Command
```bash
/lark-agent-simple <markdown-file> [--owner="Name"] [--due-date="YYYY-MM-DD"]
```
### Parameters
- `<markdown-file>` (required): Path to markdown test file
- `--owner` (optional): Task owner name (default: "Test User")
- `--due-date` (optional): Target date YYYY-MM-DD (default: 14 days from now)
- `--start-date` (optional): Start date YYYY-MM-DD (default: today)
### Examples
```bash
# Basic usage
/lark-agent-simple tests/manual/onboarding-test.md
# With custom owner and due date
/lark-agent-simple tests/manual/login-test.md --owner="QA Team" --due-date="2025-12-31"
# With start and due dates
/lark-agent-simple tests/manual/api-test.md --owner="Dev Team" --start-date="2025-10-20" --due-date="2025-11-03"
```
## Markdown Format
Your test file must follow this structure:
```markdown
# Test Title
Test description
## Test Scenario: Scenario Name
Scenario description
### Task: Task Name
1. Step one
2. Step two
3. Step three
Expected Result: What should happen
```
### Format Requirements
- **H1** (`#`): Test title (required)
- **H2** (`##`): Test scenarios (starts with "Test Scenario:")
- **H3** (`###`): Individual tasks (starts with "Task:")
- **Steps**: Numbered list items
- **Expected Result**: Line starting with "Expected Result:"
## Output
### Compact JSON Data
The Python parser outputs minimal JSON:
```json
{
"success": true,
"data": {
"test": {
"title": "Test Title",
"description": "Test description",
"owner": "QA Team",
"start_date": "2025-10-19",
"due_date": "2025-11-02"
},
"scenarios": [
{
"id": "scenario-0-1729300000000",
"title": "Scenario Title",
"description": "Scenario description",
"tasks": [
{
"id": "task-0-0-1729300000000",
"title": "Task Title",
"description": "Steps...",
"expected_result": "Expected outcome"
}
]
}
],
"metadata": {
"total_scenarios": 3,
"total_tasks": 10,
"source_file": "path/to/test.md"
}
}
}
```
### Lark Task Structure
Creates 3-level hierarchy:
- **Level 1**: Parent task (test overview)
- **Level 2**: Scenario tasks (marked as milestones if they have subtasks)
- **Level 3**: Individual test tasks
## Integration with Lark MCP
This skill uses the following Lark MCP tools:
- `task_v2_tasklist_create` - Create task list
- `task_v2_task_create` - Create parent task
- `task_v2_taskSubtask_create` - Create scenario and individual tasks
All calls use `useUAT: true` for user access token authentication.
## Workflow Details
The slash command executes this workflow:
1. **Parse Markdown** ā Execute Python script ā Get compact JSON
2. **Create Tasklist** ā Call MCP ā Save `tasklistGuid`
3. **Create Parent Task** ā Call MCP ā Save `parentTaskGuid`
4. **Create Scenarios** ā Loop + Call MCP ā Save `scenarioGuids[id]`
5. **Create Tasks** ā Loop + Call MCP ā Save `taskGuids[id]`
6. **Report Summary** ā Display counts and IDs
## Error Handling
The parser validates:
- File exists and is markdown (.md or .markdown)
- File has valid structure (H1, H2, H3 hierarchy)
- Dates are in correct format
Errors are returned as:
```json
{
"success": false,
"error": "Error message",
"error_type": "FileNotFoundError"
}
```
## Key Benefits
### Token Efficiency
- **60-70% reduction** in token usage
- Minimal data transfer (no workflow instructions)
- Direct execution (no interpretation overhead)
### Speed
- Faster execution (fewer round trips)
- No workflow generation delay
- Immediate MCP calls
### Maintainability
- Clean separation (data vs logic)
- Logic in one place (slash command)
- Easy to update execution pattern
### Simplicity
- Straightforward data flow
- No complex abstraction layers
- Clear execution path
## Comparison with Original lark-agent
| Aspect | lark-agent (Original) | lark-agent-simple (New) |
|--------|---------------------|------------------------|
| Python Output | Full workflow plan (2000-5000 tokens) | Minimal data (500-1000 tokens) |
| Execution Logic | In Python (generates instructions) | In slash command (direct) |
| MCP Calls | Claude interprets from plan | Claude executes directly |
| Token Usage | 10,000-25,000 per execution | 3,000-8,000 per execution |
| Python Lines | ~250+ lines | ~150 lines |
| Complexity | High (abstraction layers) | Low (direct flow) |
| Speed | Slower (interpretation) | Faster (direct) |
## Files
```
.claude/skills/lark-agent-simple/
āāā SKILL.md # This file (documentation)
āāā run.py # Entry point
āāā scripts/
ā āāā markdown_parser.py # Markdown parser (copied from original)
ā āāā lark_agent_simple.py # Minimal parser (data only)
āāā examples/
āāā sample-test.md # Example test file
.claude/commands/
āāā lark-agent-simple.md # Slash command (execution logic)
```
## Testing
To test the parser independently:
```bash
cd .claude/skills/lark-agent-simple
python run.py examples/sample-test.md --owner="Test User" --due-date="2025-12-31"
```
This outputs compact JSON that can be verified before running the full workflow.
## Troubleshooting
### Parser Issues
If parsing fails:
1. Check markdown file structure (H1 > H2 > H3 hierarchy)
2. Verify file encoding is UTF-8
3. Ensure scenario headers start with "Test Scenario:"
4. Ensure task headers start with "Task:"
### MCP Issues
If Lark task creation fails:
1. Verify Lark MCP server is running
2. Check user has permissions in Lark
3. Validate date formats (YYYY-MM-DD)
4. Review error messages from MCP
### Date Issues
If dates are invalid:
1. Use YYYY-MM-DD format only
2. Ensure due date is after start date
3. Check dates are in the future (if required by Lark)
## Version History
### v1.0.0 (Initial Release)
- Minimal JSON parser (data only)
- Direct MCP execution via slash command
- 60-70% token reduction
- 3-level task hierarchy
- Compact output format
## Support
For issues or questions:
- Review this documentation
- Check example files in `examples/`
- Verify markdown format matches requirements
- Test parser independently before full execution
---
**Remember:** This skill is designed for **token efficiency**. If you need detailed workflow tracking or complex verification, consider using the original `lark-agent` skill instead.
Attribution
Comments (0)
No comments yet. Be the first to comment!
